Self-interaction correction to density-functional approximations for many-electron systems
نویسنده
چکیده
The exact density functional for the ground-state energy is strictly self-interaction-free (i.e., orbitals demonstrably do not self-interact), but many approximations to it, including the local-spin-density (LSD) approximation for exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem, Although the first method introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchangecorrelation hole, while substantially improving the description of its shape. We apply this method to a number of physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations include (i) improved values for the total energy and for the separate exchange and correlation pieces of it, (ii) accurate binding energies of negative ions, which are wrongly unstable in LSD, (iii) more accurate electron densities, (iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct longrange behavior of the potential and density, It appears that SIC can also remedy the LSD underestimate of the band gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate of the cohesive energies of transition metals. The LSD spin splitting in atomic Ni and s-d interconfigurational energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional occupation numbers, and present a parametrization of the electron-gas correlation energy at any density, based on the recent results of Ceperley and Alder.
منابع مشابه
Implementation and reassessment of the Perdew-Zunger self-interaction correction
Density functional theory (DFT) using semi-local functional approximations can describe many chemical properties to high accuracy, but in some cases large and even qualitative errors emerge. Some of these errors are ascribed to an unphysical interaction of each electron with itself, which is present as a result of the approximations made in the exchange-correlation functional. The Perdew-Zunger...
متن کاملScaling down the Perdew-Zunger self-interaction correction in many-electron regions.
Semilocal density functional approximations (DFAs) for the exchange-correlation energy suffer from self-interaction error, which is believed to be the cause of many of the failures of common DFAs, such as poor description of charge transfer and transition states of chemical reactions. The standard self-interaction correction (SIC) of Perdew and Zunger mends some of these failures but spoils suc...
متن کاملIons in solution: density corrected density functional theory (DC-DFT).
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to ...
متن کاملAn improved density matrix functional by physically motivated repulsive corrections.
An improved density matrix functional [correction to Buijse and Baerends functional (BBC)] is proposed, in which a hierarchy of physically motivated repulsive corrections is employed to the strongly overbinding functional of Buijse and Baerends (BB). The first correction C1 restores the repulsive exchange-correlation (xc) interaction between electrons in weakly occupied natural orbitals (NOs) a...
متن کامل4 Ions in solution : Density Corrected Density Functional Theory ( DC - DFT )
Standard density functional approximations often give questionable results for oddelectron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to i...
متن کامل